Bayesian Model Averaging and Endogeneity Under Model Uncertainty: An Application to Development Determinants1
نویسندگان
چکیده
Recent approaches to development accounting reflect substantial model uncertainty at both the instrument and the development determinant level. Bayesian Model Averaging (BMA) has been proven useful in resolving model uncertainty in economics, and we extend BMA to formally account for model uncertainty in the presence of endogeneity. The new methodology is shown to be highly efficient and to reduce many-instrument bias; in a simulation study we found that IVBMA estimates reduced mean squared error by 60% over standard IV estimates. We also introduce Bayesian over and under-identification tests that are based on model averaged predictive p-values. This approach is shown to mitigate the reduction in power these tests experience as dimension increases. In a simulation study where the exogeneity of the instrument is compromised we show that the classical Sargan test has a power of 0.2% while our Bayesian over-identification test has a power of 98% at detecting the violation of the exogeneity assumption. An application of our method to a prominent development accounting approach leads to new insights regarding the primacy of institutions. Using identical data and robustness specifications we find support not only for institutions, but also for geography and integration, once both model uncertainty and endogeneity have been jointly addressed.
منابع مشابه
Bayesian Model Averaging and Endogeneity Under Model Uncertainty: An Application to Development
Recent approaches to development accounting reflect substantial model uncertainty at both the instrument and the development determinant level. Bayesian Model Averaging (BMA) has been proven useful in resolving model uncertainty in economics, and we extend BMA to formally account for model uncertainty in the presence of endogeneity. The new methodology is shown to be highly efficient and to red...
متن کاملTwo-Stage Bayesian Model Averaging in Endogenous Variable Models.
Economic modeling in the presence of endogeneity is subject to model uncertainty at both the instrument and covariate level. We propose a Two-Stage Bayesian Model Averaging (2SBMA) methodology that extends the Two-Stage Least Squares (2SLS) estimator. By constructing a Two-Stage Unit Information Prior in the endogenous variable model, we are able to efficiently combine established methods for a...
متن کاملA Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf
Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...
متن کاملA Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf
Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...
متن کاملBayesian Model Averaging in the Instrumental Variable Regression Model
This paper considers the instrumental variable regression model when there is uncertainty about the set of instruments, exogeneity restrictions, the validity of identifying restrictions and the set of exogenous regressors. This uncertainty can result in a huge number of models. To avoid statistical problems associated with standard model selection procedures, we develop a reversible jump Markov...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009